Modulare Membran-Drucklufttrockner

www.specken-drumag.com www.ribapneumatic.de

Kompakte Membran-Drucklufttrockner

MSD-Serie

Luftaufbereitung einer Lackierstation mit Vorfilter, Feinstfilter und Membrantrockner.

Luftaufbereitung einer Laser-Kunststoffschneidemaschine mit Vorfilter, Feinstfilter, Membrantrockner und Aktivkohlefilter.

Luftaufbereitung für optische Instrumente mit Vorfilter, Feinstfilter mit Differenzdruck-Manometer, Membrantrockner, Aktivkohlefilter und Druckregler.

Luftaufbereitung einer Messmaschine mit feinstgefilteter und getrockneter Druckluft

Einführung

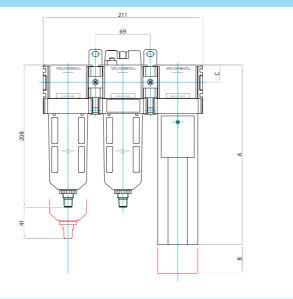
Der Membran Drucklufttrockner der MSD Serie verwendet ein fortschrittliches Molekularmembran Design, das einen atmosphärischen Taupunkt von -40 °C erreicht. Der Membran Drucklufttrockner der MSD Serie ist in 12 verschiedenen Modellen erhältlich, die Sie mit Druckluft bei Durchflussraten bis zu 40 Nm³/h mit einem atmosphärischen Taupunkt von -20 °C versorgen.

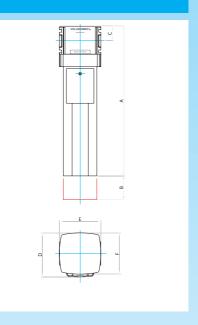
Membran Drucklufttrockner sind zur einfachen Installation, Bedienung und langfristiger Zuverlässigkeit konstruiert. Unser kompaktes, platzsparendes Membran-Drucklufttrockner Design ergänzt sich mit unseren modularen Feinstfiltern der 18/28er Baureihe unter Verwendung unserer patentierten modularen Verbindungsstücke. Einfach und schnell erhalten Sie, durch Verbinden unserer Hochleistungsfilter mit dem Membrantrockner, ein System zur Erzeugung von reiner und trockener Druckluft. Unser innovatives, modulares Design macht zusätzliche Anschlüsse, Adapter und Zubehör überflüssig. Das Ergebnis ist ein effektives Trocknersystem zur Erzeugung reiner und trockener Druckluft bei niedrigen Betriebskosten und minimaler Wartung.

Anwendung

Der modulare Membran-Drucklufttrockner der MSD Serie kommt in vielen industriellen Bereichen zum Einsatz: Pneumatischen Steuerungen, Luftlager, Automation/Roboter, Koordinatengeräte, Verpackungs- und

Druckindustrie, Elektronik/Halbleiter, IC Test-Maschinen, Lackiertechnik, Medizin und Zahnmedizin, Laboratorien, Werkzeugmaschinen/Laser, Optische Instrumente, Telekommunikation


Vorteile


- Erhältlich in 3/8, 1/2 NPT/ BSPP-G Gewindegrößen
- Trockene Druckluft sofort verfügbar
- Kompaktes, modulares Design
- Einfache platzsparende Installation
- Niedrige Druckdifferenz
- Ohne FCKWs/FKWs

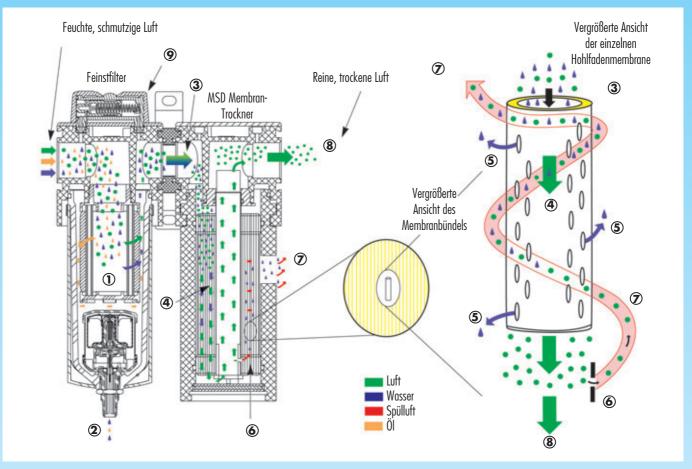
- Geeignet für gefährliche Bereiche (Exschutz)
- Keine beweglichen Teile
- Keine elektrischen Anschlüsse
- Keine Spüllufteinstellung erforderlich
- Kompatibel mit 18/28 Modular Baureihe

Maßbilder/Baumaße

Luftaufbereitung einer Lackierstation mit 5 µm Vorfilter, 0,01 µm Feinstfilter und Membrantrockner.

Abmessungen

Modell	mm	Α	B*	C	D	E	F
MSD-XX-KA1X		193	42	26	-	74	74
MSD-XX-KA2X		264	42	26	_	74	74
MSD-XX-KB1X		302	57	26	79	74	74
MSD-XX-KB2X		373	57	26	79	74	74


Technische Daten

Alle Modelle:						
Min./Max. Eingangstemperatur	5 °C bis 51°C					
Umgebungstemperatur	5 °C bis 51°C					
Min./Max. Eingangsdruck	4,1 bar bis 10,3 bar					
Druckluftanforderung (@ Trockner Eingang)	ISO Klasse 1, - 1* (0,01 Mikron, Ölabscheidung)					
Eingangs-/Ausgangsanschlüsse NPT/BSPP-G	3/8,1/2					
Materialspezifikationen	Körper Zink; Behälter Aluminium; Dichtungen Nitril					
Produktspezifisch:						
Modellnummer	MSD-XX-KA1E	MSD-XX-KA2E	MSD-XX-KB1E	MSD-XX-KB2E		
Maximaler Differenzdruck**	0,099 bar	0,099 bar	0,269 bar	0,299 bar		
Gewicht kg	1,4	1,6	1,9	2,4		

^{*} ISO Standard 8573-1: 1991 (E), bezogen auf maximale Partikelgröße und Konzentration fester Verunreinigungen und maximalem Ölgehalt.

^{**} Anmerkung : Siehe Katalog 9EM-TK-190 für Durchflusskurven der M-Serie Filter.

Funktion

Zur Erreichung optimaler Leistungsfähigkeit und hoher Druckluftqualität für Ihre Anwendung ist es erforderlich, einen Microalescer™ mit automatischem Ablaß zu installieren. Der Feinstfilter verhindert die Verunreinigung der Membrane durch Schmutzpartikel sowie durch Öl-/Wasseraerosole. Diese Schnittbildzeichnung veranschaulicht ein typisch sauberes, trockenes Druckluftsystem.

Arbeitsweise:

Unreine, gesättigte Luft passiert den Mikro- Feinstfilter™ ① in dem feste Partikel, Flüssigkeiten und Aerosol Verunreinigungen effizient zurückgehalten werden. Das herausgefilterte Öl und Wasser wird dann über den automtischen Ableiter abgelassen. ②

Die reine, gesättigte Luft passiert nun den Trockner ③ und strömt durch das Modul ④, das aus einem dicht gepackten Bündel von Hohlfasermembranen besteht. Während die Druckluft durch die Hohlfäden strömt, diffundiert der Wasserdampf die Membranwände. ⑤ Ein Teil der getrockneten Luft wird am Ende des Hohlfadenmoduls ⑥ über eine feine Düse gegen Atmosphäre expandiert und als Spülluft verwendet.

Die Gegenstrom Spülluft umströmt nun die Außenseite der Hohlfadenmembrane und trägt die Wassermoleküle mit sich, bevor sie in die Atmosphäre gelangen ②.

Reine, trockene Druckluft versorgt nun die Anwendung 3.

Die Arbeitsweise des Membrantrockners ist sehr elementar. Gesättigte Luft hat einen höheren partiellen Dampfdruck als trockene Luft. Das Resultat, eine konstante Diffusion der Wassermoleküle durch die Membranwände ⑤ vom Inneren der Hohlfadenmembrane, wo sich feuchte Druckluft befindet, zur Außenseite, zum niedrigeren partiellen Dampfdruck des Spülluftstroms.

Der MSD Membrantrockner ist so konzepiert, daß er permanent eingesetzt werden kann — 24 Stunden pro Tag, 7 Tage die Woche. Die einzige Instandhaltungsmaßnahme ist die Auswechslung des Feinstfilterelements, sobald der Differenzdruckindikator von grün auf rot wechselt .

Durch unseren Behälterbajonettverschluß dauert dieser Austausch weniger als 5 Minuten.

Auswahl

Verwenden Sie die Durchflusskapazitäten aus Tabelle A, um ein Trocknermodell entsprechend Ihrer Anwendung auszuwählen. Diese Tabelle gibt einen Eingangsdurchfluss bei 7 bar und eine Eingangslufttemperatur von 25 °C an.

Ausgangs-Durchfluss — Der Ausgangsdurchfluss des Modells aus Tabelle A muss bezüglich der Eingangstemperatur und des Drucks der Trocknerinstallation korrigiert werden. Multiplizieren Sie die Ausgangsdurchflussrate (aus Tabelle A) mit den Korrektur Faktoren aus Tabelle B und C, um die Ausgangs-Durchflussrate bei aktuellen Betriebsbedingungen zu erhalten.

Tabelle A: Eingangs-/Ausgangs-Durchflusskapazitäten

Modell- Nummer ¹	Ausgangs- atmosphärischer Taupunkt °C	Eingangs- druck bar	Ausgangs- durchfluss I/min	Benötigter Eingangs- durchfluss I/min	Spülluft %	Anschluß- größe	Gewicht kg
MSD-C3-KA1E		7	51	59	13	3/8	1,4
MSD-C3-KA2E			99	113		3/8	1,6
MSD-C3-KB1E			201	231	10	3/8	1,9
MSD-C3-KB2E	-20		300	345	20	3/8	2,4
MSD-C3-KA1D	-20		99	125		3/8	1,4
MSD-C3-KA2D			201	252		3/8	1,6
MSD-C3-KB1D			399	498		3/8	1,9
MSD-C3-KB2D			594	741		3/8	2,4
MSD-C3-KA1D		7	40	51	20	3/8	1,4
MSD-C3-KA2D	-40		79	99		3/8	1,6
MSD-C3-KB1D			158	198		3/8	1,9
MSD-C3-KB2D			241	300		3/8	2,4
Mit Vorfilter (0,01 N	likron Ölabscheidung	j)					
MSD-C3-CA1E		7	51	59	13	3/8	2,4
MSD-C3-CA2E			99	113		3/8	2,6
MSD-C3-CB1E			201	231		3/8	2,9
MSD-C3-CB2E	00		300	345		3/8	3,3
MSD-C3-CA1D	-20		99	125	20	3/8	2,4
MSD-C3-CA2D			201	252		3/8	2,6
MSD-C3-CB1D			399	498		3/8	2,9
MSD-C3-CB2D			594	741		3/8	3,3
MSD-C3-CA1D		7	40	51	20	3/8	2,4
MSD-C3-CA2D	40		79	99		3/8	2,6
MSD-C3-CB1D	-40		158	198		3/8	2,9
MSD-C3-CB2D			241	300		3/8	3.3

¹ Einheit auch in 1/2 NPT oder BSPP-G erhältlich. Siehe vorherige Seite für Modell-Auswahl.

Durchflusswerte basieren auf 7 bar Eingang, 23 °C Eingangstemperatur und 23 °C Raumtemperatur. Maximale Betriebstemperatur des Vorfilters muß unter 66 °C liegen. Siehe Vorfilter-Informationen zur Ermittlung der maximalen Betriebstemperatur. Getestet nach ANSI/CAGI Standard ADF 700.

Tabelle B: Druck Korrektur Faktoren

Eigangsdruck bar	4,1	5,5	7	8,3	9,6	11	
Faktor	0,55	0,75	1,0	1,20	1,35	1,50	

Tabelle C: Eingangstemperatur (°C) Korrektur Faktoren

Taupunkt	5	15	25	35	45	50
-20 °C	1,3	1,25	1,0	0,85	0,75	0,7
-40 °C	1,28	1,1	1,0	0,9	0,81	0,8

Multiplizieren Sie die Ausgangsdurchflussrate (von Tabelle A) mit den korrigierten Werten (aus Tabelle B und C) um die Ausgangsdurchflussrate bei aktuellen Betriebsbedingungen zu erhalten.

Beispiel

Bestimmen Sie die Durchflusskapazität eines MSD-C3-KB2D mit einer Eingangsdruckluft von 35 °C und 8,3 bar und einem Ausgangs ADP von -19 °C.

Schritt 1:

Korrigieren Sie den Durchfluss für den Druck Von Tabelle B @ 8,3 bar Eingangsdruck Durchfluss Korrekturfaktor = 1,2

Eingangsdurchfluss = $1,2 \times 741$

= 889,2 l/min

Ausgangsdurchfluss = $1,2 \times 594$

= 712,8 I/min

Schritt 2:

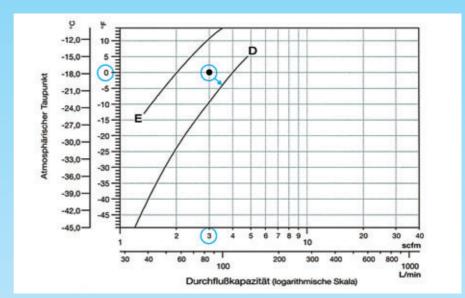
Korrigieren Sie den Durchfluss für die Temperatur Von Tabelle C @ 33 °C Eingangstemperatur Eingangsdurchfluss (von Schritt 1)

 $= 889,2 \times 0,85 = 755,82 \text{ l/min}$

Ausgangsdurchfluss (von Schritt 1)

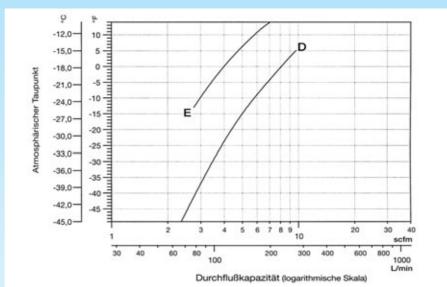
 $= 712.8 \times 0.85 = 605.88 \text{ l/min}$

Übersicht

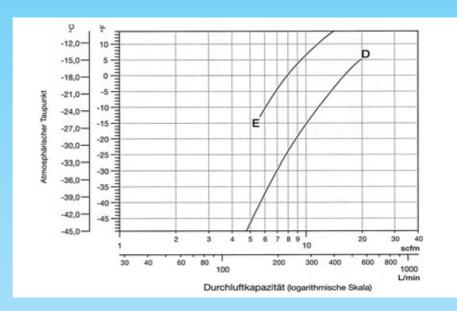

Zur grafischen Darstellung:

Fixieren Sie den aktuellen Anwendungspunkt (Drucktaupunkt und eingestellte Durchflussrate) auf dem Graphen. Die Kurve, die dem Punkt unterhalb und rechts am nächsten liegt, gibt das richtige Modell für die Anwendung an.

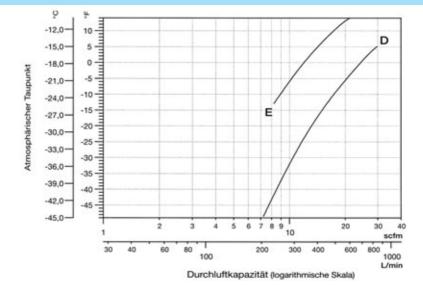
Beispiel 5 Nm³/h @ 19 °C ADP, Modell MSD-C3-KA1D ist korrekt. Beispiel:

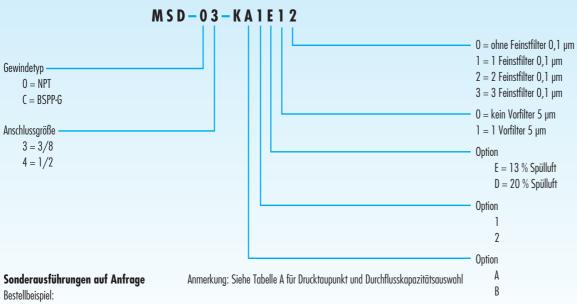

MSD-C3-KA1D MSD-C3-KA1E

MSD-C3-KA2D MSD-C3-KA2E



Getestet nach ANSI/CAGI Standard ADF 700, Membran-Drucklufttrockner Testverfahren


MSD-C3-KB1D MSD-C3-KB1E


MSD-C3-KB2D MSD-C3-KB2E

Typschlüssel

Bestimmen Sie Ihren Membran-Drucklufttrockner

